地面防空装备岛礁环境适应性对策研究

邱实, 汪文峰

装备环境工程 ›› 2025, Vol. 22 ›› Issue (11) : 178-185.

PDF(983 KB)
PDF(983 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (11) : 178-185. DOI: 10.7643/ issn.1672-9242.2025.11.019
环境试验与观测

地面防空装备岛礁环境适应性对策研究

  • 邱实1,2, 汪文峰1,*
作者信息 +

Strategies for the Environmental Worthiness of Ground-based Air Defense Equipment on Islands and Reefs

  • QIU Shi1,2, WANG Wenfeng1,*
Author information +
文章历史 +

摘要

针对岛礁高温、高湿、高盐雾、强太阳辐射等“三高一强”的复合环境特征,系统评述了其对地面防空装备各系统的损伤机理与失效模式,深入剖析了现有研究在多物理场耦合、试验方法与建模仿真等方面存在的具体技术瓶颈,指出其在应对岛礁动态、随机环境时存在的范式局限。在此基础上,借鉴国外先进经验,提出了一个以数据驱动为核心、数字孪生为抓手的装备环境适应性新质保障工程范式。该范式明确了多维数据感知、孪生模型预测、人机融合决策的技术路径,旨在推动装备保障由“经验维修”向“科学预测”的根本性转变,为提升装备全寿命周期环境适应能力提供理论与工程参考。

Abstract

Focusing on the “three highs and one strong” composite environmental characteristics (high temperature, high humidity, high salt fog, and strong solar radiation), the work aims to systematically review the damage mechanisms and failure modes affecting the equipment and deeply analyze the systemic bottlenecks in existing researches concerning multi-physics coupling, testing methods, and modeling & simulation, thus revealing the paradigm limitations in addressing the dynamic and stochastic island environment. Building on this analysis and drawing from advanced international experience, a new-quality support engineering paradigm centered on data-driven methodologies and enabled by digital twin technology was proposed. This paradigm defines a clear technical pathway from multi-dimensional data sensing and twin model prediction to human-machine integrated decision-making. The ultimate goal is to drive a fundamental shift in equipment support from “experience-based maintenance” to “science-based prediction,” providing theoretical and engineering references for enhancing the equipment's full life-cycle environmental worthiness.

关键词

岛礁环境 / 地面防空装备 / 环境适应性 / 多物理场耦合 / 数字孪生 / 工程范式

Key words

island and reef environment / ground-based air defense equipment / environmental worthiness / multi-physics coupling / digital twin technology / engineering paradigm

引用本文

导出引用
邱实, 汪文峰. 地面防空装备岛礁环境适应性对策研究[J]. 装备环境工程. 2025, 22(11): 178-185 https://doi.org/10.7643/ issn.1672-9242.2025.11.019
QIU Shi, WANG Wenfeng. Strategies for the Environmental Worthiness of Ground-based Air Defense Equipment on Islands and Reefs[J]. Equipment Environmental Engineering. 2025, 22(11): 178-185 https://doi.org/10.7643/ issn.1672-9242.2025.11.019
中图分类号: TJ761.1   

参考文献

[1] 张伦武, 周堃, 赵方超, 等. 装备环境适应性研究进展及展望[J]. 装备环境工程, 2024, 21(5): 1-12.
ZHANG L W, ZHOU K, ZHAO F C, et al.Research Progress and Prospect of Materiel Environmental Worthiness[J]. Equipment Environmental Engineering, 2024, 21(5): 1-12.
[2] 张梦龙, 赵志敏. 东南海域岛礁环境对武器装备的影响及对策研究[J]. 装备环境工程, 2020, 17(10): 20-25.
ZHANG M L, ZHAO Z M.The Influence and Countermeasures Study of Weapon Equipment Influenced by Island-Reef Environment in the Southeastern Sea[J]. Equipment Environmental Engineering, 2020, 17(10): 20-25.
[3] 文邦伟, 胥泽奇. 外军装备环境适应性典型案例[J]. 装备环境工程, 2005, 2(3): 83-87.
WEN B W, XU Z Q.The Typical Cases of Environmental Worthiness of Foreign Materiel[J]. Equipment Enviornment Engineering, 2005, 2(3): 83-87.
[4] KUMAR A, STEPHENSON L D, GERDES G, et al.Corrosion Related Costs for Military Facilities[C]//Corrosion 2004. New Orleans: NACE International, 2004.
[5] 周林, 陶建锋, 王君. 地空导弹装备环境适应性模糊综合评价模型研究[J]. 装备指挥技术学院学报, 2006, 17(2): 62-66.
ZHOU L, TAO J F, WANG J.Research on the Fuzzy-Overall Evaluation Model of Environmental Suitability for Ground-to-Air Missile Equipment[J]. Journal of the Academy of Equipment Command & Technology, 2006, 17(2): 62-66.
[6] 吴玥, 敖晨阳, 刘云生, 等. 水面舰船风浪环境适应性内涵及综合评估方法研究[J]. 装备环境工程, 2021, 18(9): 50-56.
WU Y, AO C Y, LIU Y S, et al.Concept and Evaluating Method Investigation of Wind & Wave Environmental Adaptability of Warship[J]. Equipment Environmental Engineering, 2021, 18(9): 50-56.
[7] 刘艳, 刘艺, 陈江攀, 等. 导弹自然环境适应性综合评价方法[J]. 现代防御技术, 2021, 49(3): 123-129.
LIU Y, LIU Y, CHEN J P, et al.Comprehensive Evaluation Method of Missile’s Natural Environment Adaptability[J]. Modern Defence Technology, 2021, 49(3): 123-129.
[8] 丁康康, 刘亚强, 顾良华, 等. E420在南海岛礁海水环境腐蚀行为规律研究[J]. 装备环境工程, 2020, 17(10): 1-7.
DING K K, LIU Y Q, GU L H, et al.Corrosion Behavior of E420 in Seawater Environments of the Reef in the South China Sea[J]. Equipment Environmental Engineering, 2020, 17(10): 1-7.
[9] 洪亮, 孙伟赫, 赵建印. 基于改进GRA-KPCA模型的装备大气腐蚀因素分析[J]. 兵器装备工程学报, 2024, 45(7): 75-81.
HONG L, SUN W H, ZHAO J Y.Analysis of Equipment Atmospheric Corrosion Factors Based on Improved GRA-KPCA Model[J]. Journal of Ordnance Equipment Engineering, 2024, 45(7): 75-81.
[10] 李霞, 杨瑾, 赵伟, 等. 海洋环境对军事装备的腐蚀影响及防护技术[J]. 国防科技, 2025, 46(3): 41-49.
LI X, YANG J, ZHAO W, et al.The Influence of Marine Environment on the Corrosion of Military Equipment and Protection Technology[J]. National Defense Technology, 2025, 46(3): 41-49.
[11] 张艺凡, 淦家杭, 陈宇. 美国陆军航空兵基于状态维修提高战备水平[J]. 航空维修与工程, 2015(8): 22-23.
ZHANG Y F, GAN J H, CHEN Y.US Army Aviation Enables Cost Wise Readiness through CMB+[J]. Aviation Maintenance & Engineering, 2015(8): 22-23.
[12] 罗益锋. 纤维材料在海洋产业中的应用进展[J]. 纺织导报, 2025(3): 32-38.
LUO Y F.Advancements in the Application of Fiber Materials in the Marine Industry[J]. China Textile Leader, 2025(3): 32-38.
[13] 吴护林, 钱一欣, 赵春柳, 等. 军工材料自然环境试验体系建设与应用[J]. 工程研究-跨学科视野中的工程, 2018, 10(2): 124-132.
WU H L, QIAN Y X, ZHAO C L, et al.Construction and Application of Military Material Natural Environment Test System[J]. Journal of Engineering Studies, 2018, 10(2): 124-132.
[14] 向永华, 王争荣, 曹京宜, 等. 岛礁装备设施腐蚀现状及腐蚀控制策略研究[J]. 装备环境工程, 2021, 18(11): 28-34.
XIANG Y H, WANG Z R, CAO J Y, et al.Study on Corrosion Status and Corrosion Control Strategy for Equipment and Facilities Serving on Islands and Reefs[J]. Equipment Environmental Engineering, 2021, 18(11): 28-34.
[15] 朱爱红, 孙亮, 李明, 等. 地空导弹武器装备环境适应性试验现状与未来发展[J]. 航天器环境工程, 2021, 38(5): 604-608.
ZHU A H, SUN L, LI M, et al.Environmental Adaptability Test for Ground-to-Air Missile Weapons and Equipment: Current State and Future Development[J]. Spacecraft Environment Engineering, 2021, 38(5): 604-608.
[16] 宋磊. 沿海地区雷达装备环境适应性防护方法研究[J]. 现代信息科技, 2019, 3(17): 45-46.
SONG L.Research on Environmental Adaptive Protection Method of Radar Equipment in Coastal Areas[J]. Modern Information Technology, 2019, 3(17): 45-46.
[17] 段楠楠, 赵英俊, 周豪. 地空导弹装备环境适应性研究与分析[J]. 装备环境工程, 2009, 6(6): 88-91.
DUAN N N, ZHAO Y J, ZHOU H.Research and Analysis of Environmental Worthiness of Ground-to-Air Missile Equipment[J]. Equipment Environmental Engineering, 2009, 6(6): 88-91.
[18] 张军, 苗学问, 宋岳恒, 等. 热带岛礁大气环境对飞机环境适应性的影响分析研究[J]. 强度与环境, 2022, 49(4): 58-64.
ZHANG J, MIAO X W, SONG Y H, et al.Influence of Atmospheric Environment on Aircraft Environmental Adaptability of Tropical Islands[J]. Structure & Environment Engineering, 2022, 49(4): 58-64.
[19] 何俊, 陶小创, 石高荣. 导弹地面装备自然环境适应性评价方法探讨[J]. 装备环境工程, 2016, 13(1): 91-97.
HE J, TAO X C, SHI G R.Discussion on Evaluation Methods of Natural Environmental Worthiness of Missile Surface Equipment[J]. Equipment Environmental Engineering, 2016, 13(1): 91-97.
[20] 赵建忠, 许宜贺, 宋强, 等. 环境适应性训练在导弹机动实战化保障中的应用[J]. 国防科技, 2022, 43(1): 130-134.
ZHAO J Z, XU Y H, SONG Q, et al.Application of Environment Adaptability Training in Combat Support for Missile Maneuvers[J]. National Defense Technology, 2022, 43(1): 130-134.
[21] 吴为, 蒙伟. 地空导弹防太阳辐射的论证、设计与试验[J]. 上海航天, 2000, 17(6): 9-15.
WU W, MENG W.Demonstration, design and Test of Solar Radiation Protection of Ground to Air Missile[J]. Aerospace Shanghai, 2000, 17(6): 9-15.
[22] 闫杰, 张洪彬, 邱森宝. 常用基础金属材料岛礁局部环境腐蚀对比研究[J]. 电子产品可靠性与环境试验, 2025, 43(1): 44-47.
YAN J, ZHANG H B, QIU S B.Comparative Study on Local Environment Corrosion of Commonly Used Base Metal Materials on Islands and Reefs[J]. Electronic Product Reliability and Environmental Testing, 2025, 43(1): 44-47.
[23] 张世艳, 张伦武, 魏小琴, 等. 模拟海洋环境中Ni-Co合金镀层对AZ91D镁合金的腐蚀防护研究[J]. 表面技术, 2017, 46(9): 229-234.
ZHANG S Y, ZHANG L W, WEI X Q, et al.Corrosion Resistance of Ni-Co Alloy Coating Prepared on AZ91D Magnesium Alloy in Simulated Marine Environment[J]. Surface Technology, 2017, 46(9): 229-234.
[24] 叶姗. 电子设备岛礁环境适应性设计[J]. 中国设备工程, 2021(2): 106-107.
YE S.Environmental Adaptability Design of Electronic Equipment Island Reef[J]. China Plant Engineering, 2021(2): 106-107.
[25] 杨玉萍, 宋建华, 刘剑, 等. 硅基底增透膜典型自然环境适应性评价研究[J]. 装备环境工程, 2022, 19(12): 127-136.
YANG Y P, SONG J H, LIU J, et al.Assessment on Environmental Adaptability of Antireflective Films on Silicon in Typical Natural Environment[J]. Equipment Environmental Engineering, 2022, 19(12): 127-136.
[26] 陆忠海, 张伦武, 李传鹏, 等. 不同温度对环氧涂层形状记忆效应和防护性能的影响[J]. 表面技术, 2021, 50(1): 357-365.
LU Z H, ZHANG L W, LI C P, et al.Effect of Different Temperatures on Shape Memory Effect and Protective Performance of Epoxy Coating[J]. Surface Technology, 2021, 50(1): 357-365.
[27] 张世艳, 张伦武, 杨小奎, 等. 典型螺栓/螺母装配件湿热海洋大气环境适应性研究[J]. 装备环境工程, 2021, 18(11): 151-156.
ZHANG S Y, ZHANG L W, YANG X K, et al.Adaptability Research of Typical Bolt/Nut Assembly Parts in Humid and Hot Marine Atmospheric Environment[J]. Equipment Environmental Engineering, 2021, 18(11): 151-156.
[28] 杨祎, 赵俊军, 杨小奎, 等. 盐雾环境对军用飞机高强螺栓疲劳极限的影响[J]. 装备环境工程, 2017, 14(3): 57-59.
YANG Y, ZHAO J J, YANG X K, et al.Effects of Salt-Fog Environment on Fatigue Limit of High Strength Bolt for Military Airplane[J]. Equipment Environmental Engineering, 2017, 14(3): 57-59.
[29] 李晓刚. 材料环境适应性评估技术及其进展[J]. 世界科技研究与发展, 2001, 23(4): 11-17.
LI X G.The Development of Environment Fitness-for-Service Technology for Materials[J]. World Sci-tech R & D, 2001, 23(4): 11-17.
[30] 闫杰, 汪凯蔚. 4种涂层体系的岛礁环境适应性对比研究[J]. 电子产品可靠性与环境试验, 2024, 42(S1): 61-65.
YAN J, WANG K W.Comparative Study on Environmental Adaptability of Four Coating Systems on Islands and Reefs[J]. Electronic Product Reliability and Environmental Testing, 2024, 42(S1): 61-65.
[31] 李炳蔚, 牛智玲, 张子骏, 等. 装备环境适应性闭环管控方法研究[J]. 装备环境工程, 2021, 18(8): 24-28.
LI B W, NIU Z L, ZHANG Z J, et al.Research on the Closed-Loop Control Method of Equipment Environmental Adaptability[J]. Equipment Environmental Engineering, 2021, 18(8): 24-28.
[32] DoD. Digital Engineering Strategy[R]. Washington: US DoD, 2018.
[33] US Department of Defense. DoD Digital Modernization Strategy[R]. Washington: US DoD, 2019.
[34] 祁红艳, 杨囡囡. 基于物联网的氢能源汽车氢泄漏智能监测研究[J]. 电子设计工程, 2025, 33(9): 86-89.
QI H Y, YANG N N.Research on Intelligent Monitoring of Hydrogen Energy Vehicles Hydrogen Leakage with Internet of Things[J]. Electronic Design Engineering, 2025, 33(9): 86-89.
[35] 李长虹, 闫杰. 南海岛礁自动气象检测设备环境适应性设计初探[J]. 环境技术, 2024, 42(2): 132-137.
LI C H, YAN J.Design of Environmental Worthiness Requirements for Automatic Climate Detect Equipment in the Island of South China Sea[J]. Environmental Technology, 2024, 42(2): 132-137.
[36] 钟琳, 陈强, 吴艳国, 等. 消防车工况及装备状态实时监测系统设计[J]. 消防科学与技术, 2019, 38(3): 397-399.
ZHONG L, CHEN Q, WU Y G, et al.Design of the Real-Time Monitoring System for Fire Engine and Equipment Condition[J]. Fire Science and Technology, 2019, 38(3): 397-399.
[37] 张生鹏, 李宏民, 赵朋飞. 导弹装备贮存寿命加速试验技术体系探讨[J]. 装备环境工程, 2018, 15(2): 92-96.
ZHANG S P, LI H M, ZHAO P F.Accelerated Testing Technology System for Storage Life of Missile Equipment[J]. Equipment Environmental Engineering, 2018, 15(2): 92-96.
[38] 祁江涛. 高高原机场空管装备健康管理技术研究[D]. 广汉: 中国民用航空飞行学院, 2024.
QI J T.Research on Health Management Technology of Air Traffic Control Equipment in High Plateau Airport[D]. Guanghan: Civil Aviation Flight University of China, 2024.
[39] 费凡, 潘瑞林, 陈超, 等. 基于数字孪生的产品全生命周期管理研究[J]. 机械制造与自动化, 2024, 53(6): 98-102.
FEI F, PAN R L, CHEN C, et al.Research on Product Full Lifecycle Management Based on Digital Twin[J]. Machine Building & Automation, 2024, 53(6): 98-102.
[40] 朱蕾, 王连杰, 许明, 等. 装备环境适应性仿真技术的发展思路探讨[J]. 装备环境工程, 2007, 4(3): 91-97.
ZHU L, WANG L J, XU M, et al.Consideration for the Development of Environmental Worthiness Simulation Technology[J]. Equipment Environmental Engineering, 2007, 4(3): 91-97.
[41] 张红英, 高赫阳, 于均园. 数字孪生技术在建筑钢结构检测中的应用[J]. 中国建筑金属结构, 2025(7): 107-109.
ZHANG H Y, GAO H Y, YU J Y.Application of Digital Twinning Technology in Detection of Building Steel Structure[J]. China Construction Metal Structure, 2025(7): 107-109.
[42] 王垚, 肖湲, 程传锐, 等. 基于微胶囊化环氧-胺化学的自修复防腐蚀涂层的实用性能研究[J]. 中国塑料, 2023, 37(12): 7-13.
WANG Y, XIAO Y, CHENG C R, et al.Study on Practical Performance of Self-Healing Anticorrosion Coating Based on Microencapsulated Epoxy-Amine Chemistry[J]. China Plastics, 2023, 37(12): 7-13.
[43] 张伦武, 周堃, 谭甜甜, 等. 装备自然环境试验数据工程建设方法与实践[J]. 装备环境工程, 2025, 22(1): 186-195.
ZHANG L W, ZHOU K, TAN T T, et al.Methods and Practices for Constructing Equipment Natural Environment Test Data Engineering[J]. Equipment Environmental Engineering, 2025, 22(1): 186-195.
[44] 周堃, 吴护林, 吴德权, 等. 环境试验与装备环境工程发展历程及相关标准[J]. 装备环境工程, 2025, 22(3): 146-151.
ZHOU K, WU H L, WU D Q, et al.Development Process and Related Standards of Environmental Testing and Equipment Environmental Engineering[J]. Equipment Environmental Engineering, 2025, 22(3): 146-151.
[45] 熊长武. 装备环境适应性设计思想变革与实践[J]. 装备环境工程, 2014, 11(2): 20-25.
XIONG C W.Transformation and Practice of Equipment Environmental Adaptability Design Ideas[J]. Equipment Environmental Engineering, 2014, 11(2): 20-25.

PDF(983 KB)

Accesses

Citation

Detail

段落导航
相关文章

/